기본 콘텐츠로 건너뛰기

Neural Network [cs231n - week 3 : Loss Functions and Optimization]

The purpose of this post is to summarize the content of cs231n lecture for me, so it could be a little bit unkind for people who didn’t watch the video . In addition, I omitted some contents that I don’t think it’s important enough, so use this article as just an assistance. Loss Function Below is the general numerical expression of loss functions. Multiclass SVM Loss There are many many many kinds of loss functions, but this class only deals with two of them : SVM loss and softmax . Above is the expression of SVM loss function. Meaning of the expression is, that score of the correct class should be larger at least one comparing to scores of the others to make the loss zero. It is more easier to understand it with an example. First, get each loss of the class like the image above. I'm not omitting the explanation because it's annoying to write. It's because explanation of the lecture slide is kind enough. And then, get the loss by calculating the mean va...
최근 글

Neural Network [cs231n - week 2 : Image Classfication]

The purpose of this post is to summarize the content of cs231n lecture for me, so it could be a little bit unkind for people who didn’t watch the video . In addition, I omitted some contents that I don’t think it’s important enough, so use this article as just an assistance. Prologure Obstacles for Image Classfication For below reasons! Obstacle is that cats are too cute..! There Is No Magic in Image Classification There is no function like below. def classify_image (image) : # Some magic here? return class_label Instead, image classification functions follow these two steps. function1 : inputs images, outputs model function2 : inputs model, predicts images Algorithms for Image Classification Simple Nearest Algorithm It’s literally simple. All you have to do to use this algorithm is just to calculate the mean value of the gap of each spot. If the calculated mean value is low, this algorithm says the two images are similar. Limitation K-near...

Javascript (Advanced)

Javascript is little bit different with other programming languages that we learned when we first started studying programming and computer science such as C, Java, C++. It’s mainly because Javascript works asynchronously, and in that reason, people made lots of unfamiliar concepts like callback , hoisting , etc. So I decided to study and post about them. I mainly referred Learning Advanced Javascript . Test Function (assert) Example of Usage assert( true , "I'll pass." ); assert( "truey" , "So will I." ); assert( false , "I'll fail." ); assert( null , "So will I." ); PASS I `ll pass. PASS So will I . FAIL I `ll fail. FAIL So will I . Defining Functions Function Declaration function isNimble () { return true ; } Function Expression Anonymous Function Expression var canFly = function () { return true ; }; Named Function Expression var canFly = function iCanFly () { re...

Running Anaconda Python on Jupyter Notebook with Docker in Windows

I think there is no IDE more suitable for studying machine learning or deep learning with Python than Jupyter Notebook. However, it is so difficult to construct a Jupyter environment without crushing with the existing Python environment. So, I decided to make an only-for-deep-learning environment in the Ubuntu Docker container to avoid all annoyance. I will assume that you already installed Docker. Environment Ubuntu 17.04 LTS Anaconda 5.0.0 (containing Python 3.6) Creating Docker Container First of all, we are going to create a Docker container. The world is going better day after day! You can get a Docker image containing Anaconda that someone created and simultaneously make a container with the image you just downloaded just with this one-line command. docker run - it --name jupyter -p 8000:8000 --volume /c/Users/jinai/Dropbox/HaveToLearnToRun/CSE/3_1_MachineLearning/jupyter_workspace:/root/jupyter_workspace continuumio/anaconda3 /bin/bash It’s quite complex. So let m...

Kotlin + NDK, OpenCV

원래 이 블로그는 영어로만 작성하려고 했었으나, 코틀린 프로젝트에서 OpenCV를 사용하는 방법에 대해 정리한 한글 블로그가 거의 없어서 이 참에 블로그 방문자 유입도 좀 늘릴 겸하여 이번 포스트는 한글로 작성하려고 한다. 절대 영어로 쓰기 귀찮아서 한글로 쓰는 게 아니다. 내가 좀 쫄보여서 그런지는 몰라도 간단한 테스트도 iterative하게 진행하는 게 마음이 편하다. 그래서 1. Kotlin 2. Java + NDK(C++) 3. Kotlin + NDK(C++) 4. Java + NDK(C++) + JNI + OpenCV 5. Kotlin + NDK(C++) + JNI + OpenCV 순으로 프로젝트를 생성하여 한 단계씩 통과시켜가며 넘어갈 생각이다. 그런데 결론부터 말하자면, OpenCV에서 Kotlin을 지원하지 않는 것으로 보인다. OpenCV의 라이브러리 폴더(OpenCV-android-sdk\sdk\native\libs\mips64)를 열어보면 libopencv_java3.so 파일은 찾을 수 있지만 libopencv_kotlin 비슷한 이름을 가진 파일은 없다. Kotlin에서 C++을 돌려봤다는 사실 정도에 만족하고 넘어가도록 하자… ㅠㅠ 환경 다음의 환경에서 진행한다. * Android Studio 2.3 * OpenCV 3.3.0 Kotlin Project 생성 먼저 안드로이드 스튜디오에서 간단한 hello world 자바코드를 생성하여 코틀린코드로 변환해보자. 그냥 처음부터 코틀린으로 만들면 되지 왜 굳이 자바코드를 변환하고 앉아있느냐 할 수도 있는데 안드로이드 스튜디오 2.3에서는 그런 기능을 제공하지 않는다. ㅠㅠ 3.0부터는 아예 코틀린이 안드로이드 스튜디오에 빌트인으로 제공되면서 처음부터 코틀린 프로젝트를 만들 수 있게 된다 카더라. 프로젝트 생성 그냥 자바 기반 안드로이드 프로젝트를 만들면 된다. 어플리케이션명을 적당히 정해주자. Company Domain은 소속된 회사이...